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Abstract. In this paper we obtain the description of axisymmetric equilibrium holes in thin fluid layers lying on 
a horizontal substrate under the influence of surface tension and gravity effects in the asymptotic limit when the 
radius of the hole is small. For values of the contact angle between the fluid and the substrate not equal to 7r 
we demonstrate that James' (J. Fluid Mech. 63, 657-664 (1974)) solution for the meniscus surrounding a narrow 
cylindrical rod dipped into a bath of fluid also provides the correct asymptotic solution to the present problem. In 
the case when the contact angle is equal to 7r we obtain the asymptotic solution for the first time. In both cases 
we obtain asymptotic expressions for the radius of the hole at the substrate and the thickness of the layer far 
from the hole. The correctness of these expressions is confirmed by comparison with numerical solutions to the 
full problem. In the light of the present study we are able to highlight shortcomings in previous studies and, in 
particular, show that their predictions for the thickness of the layer are correct only at leading order in the limit of 
small holes. 

1. Introduction 

In the coating industry it is of considerable practical importance to understand when a fluid 
layer applied to a substrate can contain holes which leave parts of the substrate uncoated, and 
if holes can exist then whether or not they will close up during the coating process. 

The pioneering theoretical and experimental work of Taylor and Michael [1] showed that 
a fluid layer lying on a horizontal plane under the influence of surface tension and gravity 
effects has a unique axisymmetric equilibrium hole configuration provided that the layer is 
sufficiently thin, and that if the layer is too thick then no such hole can exist. By considering 
the energy of this equilibrium configuration Taylor and Michael [1] showed that all these 
holes are unstable, and conjectured that non-equilibrium holes with radius smaller than that 
of this unstable equilibrium hole would close while those with larger radius would open. To 
test their hypothesis Taylor and Michael [1] conducted a series of experiments in which holes 
were made in a horizontal layer of mercury standing on a glass disc with a series of cylindrical 
probes of different radii. All the holes either opened or closed, and the division between the 
two kinds of behaviour was in good agreement with the theoretically calculated critical radius. 
Recently Wilson and Terrill [2] have confirmed these conclusions analytically for holes in thin 
fluid layers in the limit of quasi-steady motion in which the dynamics are governed entirely 
by those of  the moving contact line. An important conclusion from both these studies is that 
knowledge of the radius of the equilibrium hole configuration is of considerable practical 
importance since, at least in the quasi-static limit, it demarcates holes that open from holes 
that close. 

In general the equilibrium shape of the free surface of the fluid (which satisfies the well- 
known Young-Laplace equation) and hence the relationship between the hole radius, the 
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contact angle between the fluid and the substrate and the thickness of the layer far from the 
hole can only be determined numerically. However, analytical progress is possible in two 
limiting cases, namely when the hole is large and when the hole is small. When the hole 
radius is large, azimuthal curvature effects become insignificant and the limiting problem is 
simply that of a planar hole, which can be solved exactly (see, for example, Lamb (3, § 127)). 
However, when the hole radius is small, the situation is less clear. Sykes [4] presented an ad hoc 
treatment of the problem which yielded an analytical prediction for the layer thickness which 
the present work shows is correct only at leading order. More recently, Sharma [5] presented 
an asymptotic analysis of the problem in this limit. Unfortunately his analysis of the solution 
as the free surface becomes horizontal is flawed, with the consequence that his analytical 
prediction for the layer thickness is also correct only at leading order. However, both these 
authors apparently failed to realise that the correct asymptotic solution had essentially been 
obtained almost twenty years earlier by James [6] in the context of the formally equivalent 
problem of the meniscus surrounding a narrow cylindrical rod dipped into a bath of fluid. 

The aim of the present paper is to provide the solution to the hole problem in the asymptotic 
limit when the radius of the hole is small. For values of the contact angle not equal to 7r we 
shall demonstrate that James' [6] solution for the meniscus surrounding a narrow cylindrical 
rod, which was subsequently extended to higher orders by Lo [7], also provides the correct 
asymptotic solution to the present problem. When the contact angle is equal to 7r we shall 
obtain the asymptotic solution for the first time. In both cases the resulting predictions for the 
radius of the hole at the substrate and the layer thickness far from the hole will be verified by 
comparison with numerical solutions to the full problem. 

2. Problem formulation 

Consider a layer of fluid with constant density p lying on a solid horizontal planar substrate in 
equilibrium under the influence of constant surface tension a and acceleration due to gravity g. 
We non-dimensionalise the problem using the characteristic capillary length, le = (a/pg) 1/2. 
We wish to investigate the situation in which the fluid layer has thickness/:I far from a 
single axisymmetric hole with minimum radius Rm and the fluid makes a (static) contact 
angle 0 E (0, 7r] with the substrate. To describe the situation we employ cylindrical polar 
coordinates (R, Z), with Z measured vertically upwards, whose origin is chosen to be at the 
centre of the hole. 

As Huh and Scriven [8] were the first to point out, a considerable simplification of the 
analysis can be achieved if we treat Rm rather than/_7/as the independent variable, because 
then for each value of Rm there is a single "universal" solution to the governing equation 
from which the value of H can simply be read off for all values of 0 E (0, 7r]. In contrast, if 
/2/is taken as the independent variable then a new solution to the governing equation has to 
be calculated for each value of 0 E (0, 7r]. 

If we denote the position of the free surface of the fluid by R = R(Z) and choose the 
origin of the coordinate system so that R = Rm at Z = 0 then the function R(Z) satisfies 
the classical Young-Laplace equation (representing the static balance between surface tension 
and gravity effects) which can be written in the form 

n z z  - ~l (1 + n 2) = ( H , -  Z)(1 + n2)~ (1) 
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Fig. 1. The geometry of the problem 

Equation (1) has a unique solution that, in addition to the condition 

R = R m  at Z = 0 ,  (2) 

satisfies 

R, Rz--+oo as Z ~ H i - ,  (3) 

R = R o  at Z = - - H E ,  (4) 

Rz ~ -co  as Z --+ - H  +, (5) 

as shown in Figure 1. The values of i l l  = H~ (Rm), HE = H2(Rm) and Ro = Ro(Rm) are all 
determined as part of the solution and we denote the maximum width of the universal curve 
by H = n ( R m )  = HI + HE. 

In just the same way as O'Brien [9] describes for the related problem of a sessile drop, 
the solution for an axisymmetric hole with contact angle 0 E (0, 7r] is obtained by truncating 
the curve R = R(Z) at the point where Rz = cot0, corresponding to a hole with radius 
at the substrate/~ = / ~ ( R m ,  0) and layer thickness far from the hole/-7/= fI(Rm, 0). This 
procedure is illustrated in Fig. 1. Note that since the angle between the tangent to the universal 
curve and the R-axis increases monotonically from 0 + at Z = H i- to 7r at Z = - / / 2  
this truncation can always be performed uniquely. If 0 E (0, 7r/2) then the truncated profile 
corresponds to a hole with minimum radius R at the substrate Z = H1 - / 2 /  > 0, while if 
0 E (7r/2, 7r] then it corresponds to a hole with minimum radius Rm at Z = 0 and radius 
/~ > Rm at the substrate Z = Hi - / 7 / <  O. We note that by construction Rm = R(Rm, 7r/2), 
Ro = R(Rm, 70, H1 = H(Rm, 7r/2) and H = /:/(Rm, 70 and that/~ = /~(Rm, 0) --+ cc 
and/2/ = /:/(Rm, 0) --+ 0 as 0 --+ O. Figure 2 gives typical numerically calculated curves 
R = R(Z) for a range of values of Rm which complement the corresponding curves given 
by Huh and Scriven [8, Fig. 2]. Details of the numerical techniques used to obtain the curves 
shown in Figure 2 are described in section 4. 
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Fig. 2. Numerically calculated curves _R = R ( Z )  for R,,  = 10 -1 , 10-2, . . . ,  10 -6. Note that in order to show all 
the curves on the same axes Z has been scaled with - R , n  log/L~. 

3. Asymptotic solution for small holes 

Numerical solutions of the full problem indicate that/_2/is a monotonically increasing function 
of R ~  > 0 which satisfies 

0 < / i t  < 2 sin(0/2), (6) 

the upper bound being obtained in the limit Rm --+ ~ .  We seek the asymptotic solution to the 
present problem, and in particular expressions for the functions/~(Rm, 0) and [-I(Rm, 0), in 
the limit of small holes Rm --+ 0. 

3.1. REGION 1 : NEAR Z = 0 

Near Z = 0 both R and Z are of the same order as Rm, and so we introduce appropriately 
rescaled variables rl and zl such that R = Rmrl  and Z = Rmzl,  and write H1 = Rmhl ,  
HE = Rmh2 and H = Rmh. In terms of these new variables equation (1) becomes 

l ( l + r l ~ )  =Rm2(hl - z l ) ( l+r l~ )~  (7) 
r l Z l Z l  - -  - -  ) 

r l  

and so at leading order in Rm we obtain the equation 

1 
( I + T I ~ I )  = 0 ,  (8) r l z l z l  - -  - -  

subject to the boundary conditions 

r l ( O ) = l ,  r lz~(O)=O. (9) 
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Equation (8) is simply the Young-Laplace equation in the absence of gravity and can be readily 
solved subject to the boundary conditions (9) to yield 

rl(Zl) = coshzl.  (10) 

3.2. REGION 2 : NEAR Z = H1 

Near the horizontal asymptote at Z = H1 gravity effects become significant and equation (8) 
no longer describes the leading order behaviour correctly. In order to rectify this we introduce 
rescaled variables r2 and za such that rl = /~r2 and (~222 = h i  - 2:1, where the unknown 
scalings/~ and ~2 satisfy/~ >> ~2 and ~a << h i .  Gravity effects will balance surface tension 
effects at leading order only if we choose/~ = 1/Rm, in which case the leading order version 
of equation (1) is given by 

1 2 3 (11)  
•2z2z2 ?~2 7"2z2 - -  Z2?'2z2 

subject to the boundary condition 

r 2 - + c ~  as z 2 - + 0 .  (12) 

Writing z2 = zz(r2) instead of r2 = r2(z2), equation (11) becomes 

1 
Z2r2r 2 21- - - Z 2 r  2 = Z2, (13) 

r2 

with solution z2 = A2Io(r2) + B2Ko(r2), where -To(.) and K0(.) denote Bessel functions 
of imaginary argument of zeroth order of the first and second kind respectively, and A2 and 

B2 are constants. Since I0(r2) = O(r2-½e r2) and K0(r2) = O(r2-½e -r2) as r2 --4 oo, this 
solution can satisfy the boundary condition (12) only if A2 = 0, and so 

z2 (r2) = B2Ko (r2), (14) 

where the constant BE is as yet undetermined. Since Ko(r2) = O(logr2) as r2 --+ 0, we note 
that r2 = O(e -z2) as z2 --+ oo. 

As an aside we note that this analysis also shows that Taylor and Michael's [1, p.632] 
assertion that azimuthal curvature effects are insignificant near Z = Hi and hence that 
Z = O(e -R) as R --4 o¢ (just as in the planar problem) is not justified in the present limit, 

and that the correct behaviour is in fact Z = O(R-½e -R) as R --+ oo. 

3.3. REGION 3 : NEAR Z = - H 2  

Gravity effects also become significant near Z = -HE,  where once again equation (8) fails to 
describe the leading order behaviour correctly. In this region R is of the same order as Ro and 
so we introduce rescaled variables ~'3 and Z 3 such that rl = Rora/Rm and t~3Z 3 ----- h2 + Zl ,  
where the unknown scaling ~3 satisfies Ro >> ~3Rm and ~3 << h2. Gravity effects will balance 
surface tension effects at leading order only if 2hR 2 = ~3, where we have defined the unknown 
scaling fz such that h = hi + h2 ,-~ 2h as Rm --4 O, in which case the leading order version of 
equation (1) is given by 

1 2 3 
r3z3z3 7.3 r3z3 --r3z3, (15)  
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subject to the boundary conditions 

r3(0) = 1, r3z 3 --~ -00  as z3 --+ 0. (16) 

Writing z3 = z3 (r3) instead of r3 = r3 (z3), equation (15) becomes 

1 
Z3r3r3 + --r3 Z3r3 = 1, (17) 

with solution 

1 2 1 
z3 = ~(r3 --1)  -- ~ logr3 ,  (18) 

satisfying the boundary conditions in equation (16). Note that r3 = O(e -z3) as z3 --+ oo. 

3.4. MATCHING 

In the previous three subsections we have obtained the leading order asymptotic solutions for 
R(Z) near Z = 0, Z = Hi and Z = - H 2 .  The solution is completed by ensuring that these 
solutions match correctly in their regions of common validity. 

3.4.1. Regions I and 2 

As Z 1 ~ (30  

1 2: rl  "-, ~e i. (19) 

Since Ko(R) = - l o g R  + log2 - 7 + O( R2 logR),  where 7,2_ 0.5772156649 is Euler's 
constant, we deduce that as z2 --+ oo 

r2 ~ 2e-Te -z2/B2. (20) 

Writing the expressions in equations (19) and (20) in unscaled variables, we see that the 
solutions will match provided that 

Rm eZ/R ~ = 2e_Te-(H I-z)/(hBzR~), (21) 
2 

i.e. provided that ~2B2 = 1 and 

(4e - ' r  ~ (22) 
H l = R m l O g \ R m  J "  

3.4.2. Regions I and 3 

As Zl ~ - o o  

1 --2: I 

and as z3 --+ ~x~ 

?'3 r,~ e - l / 2 e  -22:3. 

(23) 

(24) 
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Writing the expressions in equations (23) and (24) in unscaled variables, we see that the 
solutions will match provided that 

Rme-Z/Rm = ROe-1/2e-2(H2+Z)/(63Rm), (25) 
2 

i.e. provided that 63 = 2 and 

H2 = Rm log \ Rm J" (26) 

Recalling that 2hR 2 = 63 we deduce that 

Ro =/~-1/2, (27) 

and so 

( 2e-l/2 '~ 
H2 = R m  log \Rmf¢/2 j . (28) 

Using equations (22) and (28) we deduce that the unknown scaling h >> 1 satisfies 

'~ 
2h ,~ log ~, Rm2[¢/2 ] ,  

from which we obtain 

= - log Rm, 

and thus equations (27) and (28) yield 

Ro = (-- log Rm) -1/2 

and 

H2 R,-,, log 
k Rm ( -  log Rm) 1/2 J "  

(29) 

(3o) 

(31) 

(32) 

3.5. SOLUTIONS FOR R(Rm, O) AND [-I(Rm, O) 

Having obtained solutions in all three regions and matched them together appropriately we can 
now construct the complete solution for all values of 0 E (0, 7r] and, in particular, determine 
expressions for/~(Rm, 0) and H(Rm, 0). 

3.5.1. The case 0 E (0, 70 

When 0 E (0, 70 region 3 plays no role in the solution and the condition Rz = cot0 is 
satisfied by the solution in region 1 when sinh 21 = cot 0, i.e. when 

rl sinO at zl = log  l + c o s O  sin 0 " (33) 
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Hence 

R =  Rm 
sin 0 + o(Rm) 

and 

? :sin0) 
/:I = - Rm log Rm -k- Rm log \ 1 + cos 0 ] + o(Rm). 

(34) 

(35) 

Since R ,,~ Rm as Rm --+ 0, the result in equation (35) is in exact agreement with the 
corresponding expression for the height of the meniscus on a cylindrical rod of radius/~ 
obtained by James [6] in the limit R --+ 0, which can be recovered by using equation (34) to 
re-write equation (35) in terms of R. 

Equations (34) and (35) hold for all values of 0 E (0, ~r) and, in particular, are in agreement 
with those which can be obtained in the limit 0 --+ 0 by using the familiar ideas of lubrication 
theory. In this limit the problem can be solved exactly to yield 

(36) fi=0u0( ) 
K,(R) 

and taking the limit/~ --+ 0 of equation (36) we obtain 

(37) = - /~0  log/~ + /~0  log(2e -~r) + o(/~), 

in accord with equation (35) in the limit 0 --+ 0. Note that in the planar case the corresponding 
analysis yields simply/2i = 0, in agreement with the exact solution available in this case. 

3.5.2. The case 0 = 7r 

When 0 = 7r the shape of the free surface is described by the entire universal curve R = R(Z) 
and so the solution in region 3 is important. In this case/~ = Ro and/2i = H and hence 

/~ = ( -  log Rm) -1/2 + o ( ( -  logRm) -1/2) (38) 

and 

= -2Rm log Rm Rm 
2 

- - -  l o g ( - l o g / ~ )  + O(Rm log ( - log  Rm)). (39) 

4. Numerical  solution 

The numerical solution of equation (1) was performed using a Runge-Kutta-Merson method 
implemented using NAG routine D02BGF running under UNIX on a SUN SPARCstation 10. 
The procedure employed to do this was the same as that used by Taylor and Michael [1]. 
Firstly, HI was determined by integrating equation (1) forward from R = Rm at Z = 0 for 
a range of values of H1 until the boundary condition tan - l  Rz -~ 7r/2 as Z -~ H 1 was 
satisfied to the desired degree of accuracy. Secondly, the values of/:I and/~ corresponding to 
a particular value of 0 were obtained by integrating equation (1) forwards (for 0 E (0, ~-/2)) 
or backwards (for 0 E (7r/2, 7r]) from R = Rm at g = 0 until the condition Rz = cot0 
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Table I. Comparison between the present numerically calculated ([/~v) and asymptotic (/~/A) results 

and Sharma's [5] asymptotic (_f/~) result for -f /for various values o f / L ,  when 0 = 7r/18, 7r/2 and 
171r/18. 

Rm ~rN/R~ 
1 0.14416862 

10 -1 0.96225753 

10 -z  2.9869609 

10 -3 5.2807354 

10 -4  7.5831751 

10 -3 9.8857581 

10 -6 12.188343 

R~ H~/R~ 
1 0.99702014 

l0  - I  3.1114615 

l0  -2 5.4141911 

l0  -3 7.7168328 

l0  -4  10.019419 

10 -3 12.322004 

l0  -6 14.624589 

- 1.7430989 

0.55948622 

2.8620713 

5.1646564 

7.4672415 

9.7698266 

12.072412 

0 = w / 1 8  

f [A/Rm 
-1 .6271674 

0.67541774 

2.9780028 

5.2805879 

7.5831730 

9.8857581 

12.188343 

-1 .8872675 

-0.40277131 

-0 .1248896 

-0 .1160790 

-0 .1159336 

-0 .1159315 

-0.115931 

([-IA - -  f'[N)lRm 
--1.7713360 

--0.28683979 

-8 .9581 x 10 -3 

--1.475 x 10 -4 

-2 .1  x 10 -6 

< 1 x 10 -~ 

< 1 x 10 -6 

~G/ R,,, 
0.69314718 

2.9957323 

5.2983174 

7.6009025 

9.9034876 

12.206073 

14.508658 

0 = "n-12 

f [A/Rm 
0.80907870 

3.1116638 

5.4142489 

7.7168340 

10.019419 

12.322004 

14.624589 

(H;~ - H~)/R,,, 
-0 .30387296 

-0 .1157292 

-0 .1158737 

-0 .1159303 

-0 .115931 

-0.115931 

-0 .115931 

( ~I A -- .ffI N ) l Rm 
-0 .18794144  

2.023 x 10 -4 

5.78 x 10 -3 

1.2 x 10 -6 

< 1 x 10 -6 

< 1 x 10 -6 

< 1 x 10 -6 

R~ /:/U/Rm 
1 1.4950548 

10 - l  4.9760776 

10 -2 7.8327229 

10 -3 10.152840 

10 -4 12.455662 

10-3 

10 -6  

^ .  /-G//~ 
3.1293932 

5.4319783 

7.7345634 

10.037149 

12.339734 

0 = 17~/18 

I]A/Rm 
3.2453248 

5.5479098 

7.8504949 

10.153080 

12.455665 

(/:/;~ - HN)/R.,  
1.6343384 

0.4559007 

-0 .0981595 

-0 .115691 

-0 .115928 

( f / A  -- / '7"/N)/- /~ 

1.7502700 

0.5718322 

0.0177720 

2.40 x 10 -4 

3 x 10 -6 

14.758250 14.642319 14.758250 -0.115931 < 1 x 10 -6 

17.060835 16.944904 17.060835 -0.115931 < 1 x 10 -6 

was satisfied to the desired degree of accuracy. Figure 2 gives typical numerically calculated 
curves R = R(Z) for a range of values of Rm. 

Tables 1 and 2 show comparisons between numerically calculated values of/~ and [t, 
Sharma's [5] asymptotic result for H given by equation (42), and the present asymptotic 
results for R and H given by equations (34) and (35) respectively for various values of 
Rm when 0 = 7r/18, 7r/2 and 177r/18. These results clearly demonstrate both the excellent 
agreement between the present numerical and asymptotic results and the O(Rm) error in 
Sharma's [5] prediction for H. In particular, the results displayed in Table 1 confirm that the 
next term in the expansion of H is indeed o(Rm) and suggests it may in fact be O(Rm2). 
Similarly, the values displayed in Table 2 confirm that the next term in the expansion of/~ is 
indeed o(Rm) and suggest it may also be O(Rm2). 
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Table 2. Comparison between the present numerically cal- 
culated (/~N) and asymptotic (/~a) results for/~ for vari- 
ous values Of Rm when O = 7r/18 and 177r/18. Note that 
in the case 0 = 7r/2 the relationship/~ = Rm is exact. 

0 = ~ / 1 8  

l~m RN/R.m RA/I~m (~A --hN)/l~m 
1 2.1927909 5.7587705 3.5659796 
10 -I 4.8614272 5.7587705 0.8973433 

10  - 2  5.7271346 5.7587705 0.0316359 
10 -3 5.7582380 5.7587705 5.325 × 10 - 4  

10 -4 5.7587630 5.7587705 7.5 x 10 -6 

10 -3 5.7587704 5.7587705 1 x 10 -7 
10 -6 5.7587705 5.7587705 < 1 x l0 -7 

0 = 17rr/18 

Rm kN/~m kA/Ran (hA -- kN)/t~rr~ 
1 1.4433456 5.7587705 4.3154249 
10  - l  3.8862262 5.7587705 1.8725443 

10 -2 5.6921680 5.7587705 0.0666025 
10 -3 5.7578740 5.7587705 8.965 x 10 -4 

10 -4 5.7587594 5.7587705 1.11 x 10 -3 

l0 -~ 5.7587704 5.7587705 1 x 10 -7 
l0 -6 5.7587705 5.7587705 < 1 x 10 -7 

Table 3. Comparison between the present numerically calcu- 
lated (H2N) and asymptotic (Hza) results for H2 for various 
values of Rm when 0 = a'. 

B2N / H2A / (H2A 
0.50766064 

P~  

1 
10 - 1  

10 - 2  

10-J 
10-4 

10 -3 
10  - 6  

2.0655896 1.8855689 -0.1800207 

4.0543630 3.8415804 -0.2127826 
6.1556021 5.9414329 -0.2141692 
8.3130924 8.1001770 -0.2129154 

10.502625 10.291190 -0.211435 
12.712681 12.502615 -0.210066 

Tables 3 and 4 show comparisons between numerically calculated values of /~  and H2 and 

the present asymptotic results given by equation (38) and 

H2 = -Rm log R.m - log(- log Rm) + O(Rm log(- log Rm)), (40) 

for various values of  R ~  when 0 ---- 7r. These results again demonstrate the excellent agreement 

between the present numerical and asymptotic results. In particular, they confirm that the next 

term in the expansion of  H2 is indeed O(Rm l o g ( - l o g  Rm)) while the next term in the 

expansion o f / ~  is indeed 0 ( ( -  log Rm)-l/2). 
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Table 4. Comparison between the present 
numerically calculated (/~N) and asymptotic 
(/~a) results for/~ for various values of Rm 
when 0 = 7r. 

0 = 7  

1 1.5547 
10 -l 0.6439 0.6590 0.0151 
i0 -z 0.4660 0.4660 < 1 × 10 -4 
10 -3 0.3832 0.3805 -0.0027 
10 -4 0.3326 0.3295 -0.0031 
10 -~ 0.2977 0.2947 -0.0030 
10 -6 0.2717 0.2690 -0.0027 

5. Comparison with earlier work 

Sykes [4] treated the present problem when 0 E (0, 7r) by making the ad hoc assumption 
that the zero-gravity solution appropriate in region 1 satisfies R(H1) = 1 + /~ .  Imposing 
this condition and exploiting the fact that _f//(/? sin 0) >> 1 she obtained the approximate 
expression 

( 2(1 +/~)  
/~ = Rsin01og ( l + ~ o s - ~ k , /  ' (41) 

which, by comparison with equations (34) and (35), we can now see is correct only at leading 
order in the limit R,n --+ 0. 

Subsequently Sharma [5] addressed the present problem when 0 E (0, 7r) in the limit 
Rm --~ O. His solution in region 1 agrees with the present one, but in region 2 he incorrectly 
suggested that the leading order problem was simply that corresponding to a planar hole. As a 
consequence he was unable to match the solutions correctly and the ad hoc "patching" he used 
instead amounts to requiring that the zero-gravity solution appropriate in region 1 satisfies 
R(Hl)  = 1. Imposing this condition and exploiting the fact that H/R,n  >> 1 he obtained the 
approximate expression 

( 2.sin 0 
I2i = Rmlog (1 + c o s 0 ) / ~ J '  (42) 

which we can now see is also correct only at leading order in the limit Rm --+ O. The present 
numerical results for/-it given in Table 1 extend and correct the corresponding results given 
by Sharma [5, Table 1]. 

Inspection of the present asymptotic solution shows that the solution in region 1 satisfies 
R(HI) = 2e -'r + o(1), where 2e -'Y _~ 1.122918967, and so had either of the above authors 
used this condition instead they would have obtained the present expression for/2/, which is 
accurate to O(R.m) in the limit P ~  --+ 0. 

Recently Sykes et al. [10] reported a series of experiments in which holes of various sizes 
were made in layers of two different fluids lying on a horizontal substrate. Following Sykes et 
al. [ 10] in Fig:3 we plot the dimensional thickness of the layer, [t*, as a function of dimensional 
hole radius, R*, and show the comparison between Sykes et al.'s [10] experimental results, 
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Fig. 3. Dimensional thickness of the layer/7/, as a function of dimensional hole radius R* showing the comparison 
between the experimental data of Sykes et aL [10] and theory for (a) glycerol and (b) di-iodomethane. The 
experimental points corresponding to holes which closed are denoted by solid circles (o) while those which 
opened are denoted by open circles (o). The curves denote the values of/-/* obtained from the present numerical 
calculations, the approximate expressions of Sykes [4] (equation (41)) and Sharma [5] (equation (42)) and the 
asymptotic results for both large and small values of/~*. Note that in case (a) the asymptotic value of [I* for large 
/~* is approximately 2460 #m and hence this curve does not appear on the figure. 

the values obtained from the present numerical calculations, the approximate expressions of 
Sykes [4] (equation (41)) and Sharma [5] (equation (42)) and the asymptotic results for both 
large and small values of  R*. Figure 3(a) shows the results for glycerol (for which lc = 2260 
#m) calculated using 0 = 66 °, while Fig. 3(b) shows the results for di-iodomethane (Ic = 1240 
#m) calculated using 0 = 23 °. In particular, Fig. 3 shows that the division between holes 
which open and holes which close is in good agreement with the numerically calculated value 
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of H*. Figure 3 also shows that, as we expect, the asymptotic theory for small holes is a 
good approximation to the numerical solution provided that/~* << Ic. Sykes' [4] approximate 
expression for H* was also derived on the assumption that the radius of the hole was small; 
however, despite the fact that it is correct only at leading order for small holes and does not 
have the correct asymptotic behaviour for large holes, it evidently agrees quite well with the 
numerically calculated solution over the range of values of/~* shown. 

6. The planar problem 

The equivalent planar problem is given by omitting the azimuthal curvature term from the 
Young-Laplace equation (??) but is otherwise identical provided we now interpret R as a 
cartesian coordinate. It is interesting to understand why the present asymptotic approach does 
not work for the planar problem. Adopting the same notation as for the axisymmetric case 
the solution near Z = 0 is now simply rl (Zl) = 1 which cannot in general be matched to 
the solution z2 = B2e -r2 near Z = H1 or z3 = (r3 - 1)2/2 near Z = -H2 .  Of course, as 
Lamb [3, §127] describes, in the planar case the full problem can be solved exactly to yield 
i f / =  2 sin(0/2) and so, unlike in the axisymmetric case, solutions with H << 1 are possible 
only when 0 << 1, in which case /2 /=  0 + 0(03). 

7. Conclusions 

In this paper we have obtained the description of axisymmetric equilibrium holes in thin fluid 
layers lying on a horizontal substrate under the influence of surface tension and gravity effects 
in the asymptotic limit when the radius of the hole is small. In particul~, we have shown that 
the asymptotic expressions for the radius of the hole at the substrate, R, and the thickness of 
the layer far from the hole, H,  in the limit R m  --+ 0 are given by equations (.9?) and (??) when 
0 E (0, 7r) and by equations (??) and (??) when 0 = 7r. The correctness of these expressions 
was confirmed by comparison with numerical solutions to the full problem. In the light of the 
present study we were able to highlight shortcomings in the earlier work of Sykes [4] and 
Shanna [5] and, in particular, show that their predictions for/_7/when 0 E (0, 7r) are correct 
only at leading order in the limit R m  ---> O. 
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